Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Clin Chim Acta ; 557: 117890, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38537673

RESUMO

BACKGROUND: Volumetric Absorptive Microsampling (VAMS) is emerging as a valuable technique in the collection of dried biological specimens, offering a potential alternative to traditional sampling methods. The objective of this study was to assess the suitability of 30 µL VAMS for the measurement of endogenous steroid hormones. METHODS: A novel LC-MS/MS method was developed for the quantification of 18 analytes in VAMS samples, including main endogenous free steroids and phase II metabolites of androgens. The method underwent validation in accordance with ISO/IEC 17025:2017 and World Anti-Doping Agency (WADA) requirements. Subsequently, it was applied to authentic VAMS samples obtained from 20 healthy volunteers to assess the stability of target analytes under varying storage conditions. RESULTS: The validation protocol assessed method's selectivity, matrix effect, extraction recovery, quantitative performance, carry-over and robustness. The analysis of authentic samples demonstrated the satisfactory stability of monitored steroids in VAMS stored at room temperature, 4 °C, -20 °C and -80 °C for up to 100 days and subjected to up to 3 freezing-thawing cycles. CONCLUSIONS: The validated LC-MS/MS method demonstrated its suitability for the measurement of steroids in dried blood VAMS. The observed stability of steroidal compounds suggests promising prospects for future applications of VAMS, both in anti-doping contexts and clinical research.


Assuntos
Doping nos Esportes , 60705 , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Coleta de Amostras Sanguíneas/métodos , Androgênios , Esteroides , Teste em Amostras de Sangue Seco/métodos
2.
Drug Test Anal ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38205661

RESUMO

For antidoping laboratories, the determination of an illicit testosterone (T) administration in urine samples remains a difficult process as it requires the determination of the exogenous origin by carbon isotope ratios (CIRs) of testosterone and its metabolites. As a complement to the urinary analysis, targeting testosterone esters (e.g. testosterone undecanoate [TU]) in serum samples by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) could represent a simpler approach compared with isotope ratio mass spectrometry (IRMS). These two approaches both lead to the direct detection of the administration of exogenous T but with a difference in effort and complexity of the analysis. To compare the detection window obtained with the two strategies, serum and the corresponding urine samples collected from an administration study with oral TU were analysed. Results showed that, at all timepoints where the intact TU was detected in serum, the CIRs of urinary steroids were also not in agreement with an endogenous origin. IRMS analysis required more effort but resulted in slightly longer detection windows than the ester analysis. Finally, this comparison study showed that, in the presence of a suspicious urinary steroid profile, the LC-MS/MS steroid esters analysis in the corresponding serum samples can be very helpful. If steroid esters are not detected, the IRMS analysis can then be conducted on the urine sample afterwards. Overall, the combination of matrices might facilitate the detection of prohibited T administration in sports, especially for athletes with naturally low T/E ratios.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37393882

RESUMO

Different calibration strategies are used in liquid chromatography hyphenated to mass spectrometry (LC-MS) bioanalysis. Currently, the surrogate matrix and surrogate analyte represent the most widely used approaches to compensate for the lack of analyte-free matrices in endogenous compounds quantification. In this context, there is a growing interest in rationalizing and simplifying quantitative analysis using a one-point concentration level of stable isotope-labeled (SIL) standards as surrogate calibrants. Accordingly, an internal calibration (IC) can be applied when the instrument response is translated into analyte concentration via the analyte-to-SIL ratio performed directly in the study sample. Since SILs are generally used as internal standards to normalize variability between authentic study sample matrix and surrogate matrix used for the calibration, IC can be calculated even if the calibration protocol was achieved for an external calibration (EC). In this study, a complete dataset of a published and fully validated method to quantify an extended steroid profile in serum was recomputed by adapting the role of SIL internal standards as surrogate calibrants. Using the validation samples, the quantitative performances for IC were comparable with the original method, showing acceptable trueness (79%-115%) and precision (0.8%-11.8%) for the 21 detected steroids. The IC methodology was then applied to human serum samples (n = 51) from healthy women and women diagnosed with mild hyperandrogenism, showing high agreement (R2 > 0.98) with the concentrations obtained using the conventional quantification based on EC. For IC, Passing-Bablok regression showed proportional biases between -15.0% and 11.3% for all quantified steroids, with an average difference of -5.8% compared to EC. These results highlight the reliability and the advantages of implementing IC in clinical laboratories routine to simplify quantification in LC-MS bioanalysis, especially when a large panel of analytes is monitored.


Assuntos
Esteroides , Espectrometria de Massas em Tandem , Feminino , Humanos , Espectrometria de Massas em Tandem/métodos , Calibragem , Reprodutibilidade dos Testes , Cromatografia Líquida/métodos
4.
Anal Chim Acta ; 1267: 341389, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37257979

RESUMO

BACKGROUND: Most current state-of-the-art strategies to generate individual adaptive reference ranges are designed to monitor one clinical parameter at a time. An innovative methodology is proposed for the simultaneous longitudinal monitoring of multiple biomarkers. The estimation of individual thresholds is performed by applying a Bayesian modeling strategy to a multivariate score integrating several biomarkers (compound concentration and/or ratio). This multimodal monitoring was applied to data from a clinical study involving 14 female volunteers with normal menstrual cycles receiving testosterone via transdermal route, as to test its ability to detect testosterone administration. The study samples consisted of urine and blood collected during 4 weeks of a control phase and 4 weeks with a daily testosterone gel application. RESULTS: Integrating multiple biomarkers improved the detection of testosterone gel administration with substantially higher sensitivity compared with the distinct follow-up of each biomarker, when applied to selected urine and serum steroid biomarkers, as well as the combination of both. Among the 175 known positive samples, 38% were identified by the multimodal approach using urine biomarkers, 79% using serum biomarkers and 83% by combining biomarkers from both biological matrices, whereas 10%, 67% and 64% were respectively detected using standard unimodal monitoring. SIGNIFICANCE AND NOVELTY: The detection of abnormal patterns can be improved using multimodal approaches. The combination of urine and serum biomarkers reduced the overall number of false-negatives, thus evidencing promising complementarity between urine and blood sampling for doping control, as highlighted in the case of the use of transdermal testosterone preparations. The generation in a multimodal setting of adaptive and personalized reference ranges opens up new opportunities in clinical and anti-doping profiling. The integration of multiple parameters in a longitudinal monitoring is expected to provide a more complete evaluation of individual profiles generating actionable intelligence to further guide sample collection, analysis protocols and decision-making in clinics and anti-doping.


Assuntos
Doping nos Esportes , Detecção do Abuso de Substâncias , Humanos , Feminino , Teorema de Bayes , Detecção do Abuso de Substâncias/métodos , Testosterona/urina , Esteroides/urina , Biomarcadores
5.
J Clin Endocrinol Metab ; 108(8): 1937-1946, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-36794909

RESUMO

CONTEXT: Detection of endogenous anabolic androgenic steroids (EAAS), like testosterone (T), as doping agents has been improved with the launch of the Steroidal Module of the Athlete Biological Passport (ABP) in urine samples. OBJECTIVE: To target doping practices with EAAS, particularly in individuals with low level of biomarkers excreted in urine, by including new target compounds measured in blood. DESIGN: T and T/androstenedione (T/A4) distributions were obtained from 4 years of anti-doping data and applied as priors to analyze individual profiles from 2 T administration studies in female and male subjects. SETTING: Anti-doping laboratory. Elite athletes (n = 823) and male and female clinical trials subjects (n = 19 and 14, respectively). INTERVENTION(S): Two open-label administration studies were carried out. One involved a control phase period followed by patch and then oral T administration in male volunteers and the other followed female volunteers during 3 menstrual cycles with 28 days of daily transdermal T application during the second month. MAIN OUTCOME MEASURE(S): Serum samples were analyzed for T and A4 and the performance of a longitudinal ABP-based approach was evaluated for T and T/A4. RESULTS: An ABP-based approach set at a 99% specificity flagged all female subjects during the transdermal T application period and 44% of subjects 3 days after the treatment. T showed the best sensitivity (74%) in response to transdermal T application in males. CONCLUSIONS: Inclusion of T and T/A4 as markers in the Steroidal Module can improve the performance of the ABP to identify T transdermal application, particularly in females.


Assuntos
Doping nos Esportes , Detecção do Abuso de Substâncias , Feminino , Humanos , Masculino , Esteróides Androgênicos Anabolizantes , Androstenodiona , Atletas , Esteroides , Testosterona
6.
Talanta ; 255: 124218, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36603442

RESUMO

Anti-doping rule violations related to the abuse of endogenous anabolic androgenic steroids can be currently discovered by the urinary steroidal module of Athlete Biological Passport. Since this powerful tool is still subjected to some limitations due to various confounding factors altering the steroid profile, alternative strategies have been constantly proposed. Among these, the measurement of blood concentrations of endogenous steroid hormones by LC-MS is currently of increasing interest in anti-doping, bringing significant advantages for the detection of testosterone abuse in females and in individuals with deletion of UGT2B17 enzyme. Although various research groups have made significant efforts in method development, there is currently no accepted or harmonized anti-doping method for quantitative analysis of the various testosterone doping markers in blood. In this study we present a UHPLC-MS/MS method for the quantification of major circulating steroid hormones together with an extended panel of glucuro- and sulpho-conjugated phase II metabolites of androgens. Chromatographic setup was optimized by comparing the performance of three different C18 stationary phases and by the careful selection of mobile phases with the aim of separating all the target steroids, including numerous isomeric/isobaric compounds. MS parameters were fine-tuned to obtain the sensitivity needed for measuring the target analytes, that show specific serum concentrations ranging from low pg/mL for less abundant compounds to µg/mL for sulpho-conjugated steroids. Finally, sample preparation protocol was developed for the extraction of steroid hormones from 200 µL of serum and the performance was evaluated in terms of extraction recovery and matrix effect. The final method was then applied to authentic serum samples collected from healthy volunteers (40 males and 40 females) at the Blood Bank of the City of Health and Science University Hospital of Turin. The analysis of these samples allowed to obtain results on serum concentrations of the targeted steroids, with particular emphasis on previously undiscovered phase II metabolites, such as the isomers of 5-androstane-3,17-diol glucuronide. This preliminary application also enabled measuring dihydrotestosterone sulphate in male samples, efficiently separating this analyte from its isomer, epiandrosterone sulphate, which circulates in blood at high concentrations. The promising results of this study are encouraging for the measurement of blood steroid profile markers in serum and plasma samples for Athlete Biological Passport purposes.


Assuntos
Doping nos Esportes , Espectrometria de Massas em Tandem , Feminino , Humanos , Masculino , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Esteroides , Testosterona , Androgênios , Detecção do Abuso de Substâncias/métodos
7.
Drug Test Anal ; 15(3): 324-333, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36414566

RESUMO

The steroidal module of the athlete biological passport (ABP) targets the use of pseudo-endogenous androgenous anabolic steroids in elite sport by monitoring urinary steroid profiles. Urine and blood samples were collected weekly during two consecutive oral contraceptive pill (OCP) cycles in 15 physically active women to investigate the low urinary steroid concentrations and putative confounding effect of OCP. In urine, testosterone (T) and epitestosterone (E) were below the limit of quantification of 1 ng/ml in 62% of the samples. Biomarkers' variability ranged between 31% and 41%, with a significantly lesser variability for ratios (except for T/E [41%]): 20% for androsterone/etiocholanolone (p < 0.001) and 25% for 5α-androstane-3α,17ß-diol/5ß-androstane-3α,17ß-diol (p < 0.001). In serum, markers' variability (testosterone: 24%, androstenedione: 23%, dihydrotestosterone: 19%, and T/A4: 16%) was significantly lower than in urine (p < 0.001). Urinary A/Etio increased by >18% after the first 2 weeks (p < 0.05) following withdrawal blood loss. In contrast, serum T (0.98 nmol/l during the first week) and T/A4 (0.34 the first week) decreased significantly by more than 25% and 17% (p < 0.05), respectively, in the following weeks. Our results outline steroidal variations during the OCP cycle, highlighting exogenous hormonal preparations as confounder for steroid concentrations in blood. Low steroid levels in urine samples have a clear negative impact on the subsequent interpretation of steroid profile of the ABP. With a greater analytical sensitivity and lesser variability for steroids in healthy active women, serum represents a complementary matrix to urine in the ABP steroidal module.


Assuntos
Doping nos Esportes , Humanos , Feminino , Esteroides/urina , Testosterona/urina , Di-Hidrotestosterona/urina , Anticoncepção
8.
Drug Test Anal ; 14(11-12): 1904-1919, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36203263

RESUMO

In the context of steroid analyses, the use of blood could represent a valuable complement to urine. While the blood steroid profile is currently being established to aid unveiling testosterone (T) doping, this matrix is also well suited for detection of exogenous anabolic steroids and steroid esters. In this study, a method to determine a simplified blood steroid profile in combination with the direct detection of exogenous anabolic steroids and steroid esters using just one serum aliquot was developed to obtain a comprehensive analytical workflow. Following the first chromatographic analysis of endogenous and exogenous steroids, samples were derivatised with Girard's reagent T (GT) to improve the ionisation of steroid esters and re-injected. The quantitative performance for T, androstenedione (A4) and 5α-dihydrotestosterone (DHT) was evaluated and the method was validated for qualitative analysis of exogenous analogues with estimated limits of detection (LOD) between 50 and 500 pg/ml. To demonstrate the applicability of the method, samples collected from a clinical study with an oral administration of testosterone undecanoate (TU) to 19 male volunteers were then analysed. The individual serum steroid profiles with the endogenous markers T, A4 and DHT were established as well as the concentrations of TU. TU was detected in all 19 volunteers up to 24 h, while DHT represented the most promising biomarker in endogenous steroid profile for the detection of oral TU administration. These results showed that the selected approach to combine exogenous and endogenous steroid analysis has the potential to strengthen T doping detection in the future.


Assuntos
Doping nos Esportes , Espectrometria de Massas em Tandem , Masculino , Humanos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Esteroides/análise , Testosterona , Di-Hidrotestosterona , Androstenodiona , Ésteres
9.
Drug Test Anal ; 14(11-12): 1920-1925, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36208447

RESUMO

Urine is currently the matrix of choice for the detection of exogenous substances but also for the application of the steroidal module of the Athlete Biological Passport (ABP) consisting in a longitudinal monitoring of steroid biomarkers. To fill the limitations related to urine, the longitudinal monitoring of serum steroids concentration in the so-called 'blood steroid profile' has recently been proposed. Although serum samples are collected much less than urine samples, plasma derived from ABP whole blood samples used for the full blood count could be exploited for the quantification of endogenous steroids. Alternatively, dried blood spots (DBS) that are much easier to collect could also serve as matrix for the steroid profile. In this study, we compared the concentration levels of several endogenous steroids measured in three different blood matrices (serum, plasma and DBS) collected from 100 elite athletes participating in the 2019 Doha World Athletics Championships using UHPLC-MS/MS. Plasma and serum samples were collected by venipuncture, whereas DBS were generated from whole blood samples. Although steroids demonstrated a good agreement between the three matrices, a slight but acceptable underestimation (10%-20%) was observed in plasma compared with serum. The difference between DBS and the two other matrices was dependent of the bias between serum and plasma. We also showed that a generic HCT correction for DBS could be a valuable approach for quantitative measurements. This study demonstrates the possibility to use three different matrices for the quantification of endogenous steroids although the slight discrepancies should be considered for longitudinal evaluation.


Assuntos
Doping nos Esportes , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida de Alta Pressão , Esteroides/urina , Atletas , Teste em Amostras de Sangue Seco
10.
Drug Test Anal ; 14(5): 833-850, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33817997

RESUMO

In women, hormonal fluctuations related to the menstrual cycle may impose a great source of variability for some biomarkers of testosterone (T) administration, which can ultimately disrupt the sensitivity of their longitudinal monitoring. In this study, the sensitivity of the current urinary and haematological markers of the Athlete Biological Passport (ABP), as well as serum steroid biomarkers, was investigated for the monitoring of a 28-day T gel treatment combined with endogenous fluctuation of the menstrual cycle in 14 healthy female subjects. Additionally, the analysis of urinary target compounds was performed on a subset of samples for endogenous/exogenous origin via isotope ratio mass spectrometry (IRMS). In serum, concentrations of T and dihydrotestosterone (DHT) increased significantly during the treatment, whereas in urine matrix the most affected biomarkers were found to be the ratios of testosterone/epitestosterone (T/E) and 5α-androstane-3α,17ß-diol/epitestosterone (5αAdiol/E). The detection capability of both urinary biomarkers was heavily influenced by [E], which fluctuated depending on the menstrual cycle, and resulted in low sensitivity of the urinary steroidal ABP module. On the contrary, an alternative approach by the longitudinal monitoring of serum T and DHT concentrations with the newly proposed T/androstenedione ratio showed higher sensitivity. The confirmatory IRMS results demonstrated that less than one third of the tested urine samples fulfilled the criteria for positivity. Results from this study demonstrated that the 'blood steroid profile' represents a powerful complementary approach to the 'urinary module' and underlines the importance of gathering bundle of evidence to support the scenario of an endogenous prohibited substance administration.


Assuntos
Doping nos Esportes , Epitestosterona , Biomarcadores/urina , Di-Hidrotestosterona , Feminino , Humanos , Ciclo Menstrual , Esteroides/urina , Detecção do Abuso de Substâncias/métodos , Testosterona/urina , Congêneres da Testosterona
11.
J Pharm Biomed Anal ; 204: 114280, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34340018

RESUMO

The quantification of a large panel of endogenous steroids in serum by LC-MS/MS represents a powerful clinical tool for the screening or diagnosis of diverse endocrine disorders. This approach has also demonstrated excellent sensitivity for the detection of testosterone misuse in the anti-doping field, especially in female athlete population. In both situations, the use of dried blood spots (DBS) could provide a viable alternative to invasive venous blood collection. Here, the evaluation of DBS sampling for the quantification of a panel of endogenous steroids using UHPLC-MS/MS is described. The UHPLC-MS/MS method was validated for quantitative analysis of eleven free and eight conjugated steroids and was then used for the analysis of DBS samples collected in 14 healthy women during a normal menstrual cycle (control phase) followed by a 28-days testosterone gel treatment (treatment phase). Results were compared with those obtained from serum matrix. Satisfactory performance was obtained for all compounds in terms of selectivity, linearity, accuracy, precision, combined uncertainty, stability as well as extraction recovery and matrix effects. In control phase, high correlation was observed between DBS and serum concentrations for most compounds. In treatment phase, higher testosterone concentrations were observed in capillary than in venous DBS, suggesting a possible interference resulting from testosterone contamination on finger(s) used for gel application. Steroid profiling in capillary DBS represents a simple and efficient strategy for monitoring endogenous steroid concentrations and their fluctuation in clinical context of steroid-related disorders, or for the detection of testosterone abuse in anti-doping.


Assuntos
Esteroides , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Teste em Amostras de Sangue Seco , Feminino , Humanos , Reprodutibilidade dos Testes , Testosterona
12.
Anal Chim Acta ; 1175: 338739, 2021 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-34330438

RESUMO

In the second part of this study, a systematic comparison was made between two ion fragmentation acquisition modes, namely data-independent acquisition (DIA) and DIA with ion mobility spectrometry (IMS) technology. These two approaches were applied to the analysis of 192 doping agents in urine. Group I included 102 compounds such as stimulants, diuretics, narcotics, and ß2-agonists, while Group II contained 90 compounds included steroids, glucocorticoids, and hormone and metabolic modulators. Important method parameters were examined and compared, including the fragmentation, sensitivity, and assignment capability with the minimum occurrence of false positive hits. The results differed between Group I and II in number of detected fragments when exploring the MS/MS spectra. In Group I only 13%, while in the Group II 64% of the substances had a higher number of fragments in DIA-IMS mode vs. DIA. In terms of sensitivity, the performance of the two modes with and without activated IMS dimension was identical for about 50% of the doping agents. The sensitivity was higher without IMS, i.e. in simple DIA mode, for 20-40% of remaining doping agents. Despite this sensitivity reduction with IMS, 82% of compounds from both Groups met the minimum required performance level (MRPL) criteria of the World Anti-Doping Agency (WADA) when the DIA-IMS mode was applied. Automated data processing is important in routine doping analysis. Therefore, processing methods were optimized and evaluated for the prevalence of false peak assignments by analysing the target substances at different concentrations in urine samples. Overall, a significantly higher number of misidentified compounds was observed in Group II, with an almost 2-fold higher number of misidentifications in DIA compared to DIA-IMS. This result highlights the benefit of the IMS dimension to reduce the rate of false positive in screening analysis. The optimized UHPLC-IM-HRMS method was finally applied to the analysis of urine samples from administration studies including nine doping agents from both Groups. However, to limit the number of interferences from the biological matrix, an emphasis is needed on the adequate settings of the data processing method.


Assuntos
Doping nos Esportes , Espectrometria de Mobilidade Iônica , Glucocorticoides , Entorpecentes , Esteroides , Espectrometria de Massas em Tandem
13.
Anal Chim Acta ; 1152: 338257, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648637

RESUMO

In this series of two papers, 192 doping agents belonging to the classes of stimulants, narcotics, cannabinoids, diuretics, ß2-agonists, ß-blockers, anabolic agents, and hormone and metabolic modulators were investigated, with the aim to assess the benefits and limitations of ion mobility spectrometry (IMS) in combination with ultra-high performance liquid chromatography (UHPLC) and high resolution mass spectrometry (HRMS) in anti-doping analysis. In this first part, a generic UHPLC-IM-HRMS method was successfully developed to analyze these 192 doping agents in standard solutions and urine samples, and an exhaustive database including retention times, TWCCSN2 values, and m/z ratios was constructed. Urine samples were analyzed using either a simple "dilute and shoot" procedure or a supported liquid-liquid extraction (SLE) procedure, depending on the physicochemical properties of the compounds and sensitivity criteria established by the World Anti-Doping Agency (WADA) as the minimum required performance levels (MRPL). Then, the precision of the generic UHPLC-IM-HRMS method was assessed as intraday, interday as well as interweek variation of UHPLC retention times and TWCCSN2 values, for which RSD the values were always lower than 2% in urine samples. The possibility to filter MS data using IMS dimension was also investigated, and in average, the application of IMS filtration provided low energy MS spectra with 86% less interfering peaks in both standard and urine samples. Therefore, the filtered MS spectra allowed for an easier interpretation and a lower risk of false positive result interpretations. Finally, IMS also offers additional selectivity to the UHPLC-HRMS enabling to separate isobaric and isomeric substances. Among the selected set of 192 doping agents, there were 30 pairs of isobaric or isomeric compounds, and only two pairs could not be resolved under the developed conditions. This illustrates the potential of adding ion mobility to UHPLC-HRMS in anti-doping analyses.


Assuntos
Anabolizantes , Doping nos Esportes , Cromatografia Líquida de Alta Pressão , Espectrometria de Mobilidade Iônica , Espectrometria de Massas , Detecção do Abuso de Substâncias
14.
Bioanalysis ; 12(11): 753-768, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32479744

RESUMO

Aim: Quantitative endogenous steroid profiling in blood appears as a complementary approach to the urinary module of the World Anti-Doping Agency's Athlete Biological Passport Steroidal Module for the detection of testosterone doping. To refine this approach further, a UHPLC-MS/MS method was developed for the simultaneous determination of 14 free and 14 conjugated steroids in serum. Results: The method was validated for quantitative purposes with satisfactory results in terms of selectivity, linearity range, trueness, precision and combined uncertainty (<20%). The validated method was then applied to serum samples from both healthy women and women diagnosed with mild hyperandrogenism. Conclusion: The UHPLC-MS/MS method showed promising capability in quantifying free and conjugated steroids in serum and determining variations of their concentration/distribution within serum samples from different populations.


Assuntos
Doping nos Esportes , Esteroides/sangue , Detecção do Abuso de Substâncias , Atletas , Cromatografia Líquida de Alta Pressão , Feminino , Humanos , Hiperandrogenismo/sangue , Espectrometria de Massas em Tandem
15.
J Chromatogr A ; 1616: 460780, 2020 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31862111

RESUMO

The aim of this study was to estimate the retention time variability under reproducible conditions of an SFC-MS analytical method for routine anti-doping analyses. For this purpose, a set of 51 doping agents, as neat standards and spiked in diluted urine, was used to assess their retention times variability over a period of four months, as well as the column inter-batch reproducibility. Three UHPSFC stationary phases have been employed, the Acquity UPC2 Torus 2-Picolylamine (2-PIC), UPC2 Viridis BEH and Acquity UPLC HSS C18 SB. Four columns, per column chemistry, have been purchased to represent three different production lots, with a total of twelve columns employed in this study. The two columns from the same lot were applied to the first part of the study (repeatability), whereas the representative of three different lots were employed in the second part (robustness). In terms of organic modifier, a mixture of 98% MeOH and 2% water containing 20 mM ammonium formate was selected in order to limit the formation of methyl-silyl ethers on the surface of the silica particles, thus potentially improving the repeatability of retention times. A comparison with an UHPLC reference analytical method was made with the same set of analytes. The average relative standard deviations (RSD%), represented in split violin plots, illustrate how two of the UHPSFC columns assessed in this study were able to generate an excellent repeatability of retention times, with results that are in a similar range of those generated by UHPLC. Moreover, the Torus 2-PIC has proven to be the best of the three stationary phases, with an impressive RSD% of 0.5% in diluted urine relative to the inter-month variability. Finally, the inter-batch reproducibility assessment has highlighted a good reproducibility of the same stationary phase belonging to different production lots for all three column chemistries assessed, with the Viridis BEH silica generating an RSD% of 0.7% in diluted urine. Higher values of RSD (%) were found for Torus 2-PIC and HSS C18 SB, respectively of 1.0% and 1.6%.


Assuntos
Cromatografia com Fluido Supercrítico , Doping nos Esportes/prevenção & controle , Espectrometria de Massas , Substâncias para Melhoria do Desempenho/urina , Detecção do Abuso de Substâncias/métodos , Urinálise/métodos , Humanos , Reprodutibilidade dos Testes , Dióxido de Silício/química , Detecção do Abuso de Substâncias/instrumentação , Urinálise/instrumentação , Água/química
16.
Bioanalysis ; 11(12): 1171-1187, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31179715

RESUMO

Aim: Quantification of testosterone (T) and 5α-dihydrotestosterone serum concentrations proved to be an efficient alternative to urinary steroid profiling for the detection of T doping. In this context, additional serum markers could be discovered by exploratory untargeted steroidomics studies. Results: Endogenous steroid metabolites were monitored by ultra high-performance liquid chromatography coupled to high-resolution mass spectrometry in serum samples collected during a T administration clinical trial. A three-step workflow for accurate review of annotation was used and multifactorial data analysis allowed highlighting promising serum biomarkers. Longitudinal monitoring of selected compounds was performed to assess T abuse detection capabilities. Conclusion: Application of serum steroidomics showed high potential for biomarker discovery of T doping, suggesting longitudinal monitoring of steroid hormones in serum as a significant improvement in detection of endogenous steroids abuse.


Assuntos
Análise Química do Sangue/métodos , Doping nos Esportes , Detecção do Abuso de Substâncias/métodos , Testosterona/sangue , Biomarcadores/sangue , Cromatografia Líquida de Alta Pressão , Humanos
17.
Methods Mol Biol ; 1738: 261-278, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29654596

RESUMO

The extraction and untargeted UHPLC-HRMS analysis of endogenous steroids in serum samples is described in this protocol. The employed full-scan acquisition mode provides the adequate sensitivity to highlight the main endogenous steroids present in blood, including mineralocorticoids, progestogens , and androgens. Technical aspects for both chromatography and mass spectrometry are discussed in detail, together with a proposition of setup for sample sequence and data analysis. Furthermore, general comments are given to help the assessment of data quality and system performance.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Metabolômica/métodos , Esteroides/sangue , Humanos
18.
Artigo em Inglês | MEDLINE | ID: mdl-29444490

RESUMO

Matrix effects (ME) is acknowledged as being one of the major drawbacks of quantitative bioanalytical methods, involving the use of liquid chromatography coupled to mass spectrometry (LC-MS). In the present study, the incidence of ME in SFC-MS/MS and LC-MS/MS in the positive mode electrospray ionization (ESI+) was systematically compared for the analysis of urine and plasma samples using two representative sets of 40 doping agents and 38 pharmaceutical compounds, respectively. Three different SFC stationary phase chemistries were employed, to highlight the importance of the column in terms of selectivity. Biological samples were prepared using two different sample treatments, including a non-selective sample clean-up procedure (dilute and shoot (DS) and protein precipitation (PP) for urine and plasma samples, respectively) and a selective sample preparation, namely solid phase extraction (SPE) for both matrices. The lower susceptibility to ME in SFC vs. reversed phase LC (RPLC) was verified in all the experiments performed on urine, and especially when a simple DS procedure was applied. Also, with the latter, the performance strongly varied according to the selected SFC stationary phase, whereas the results were quite similar with the three SFC columns, in the case of SPE clean-up. The same trend was observed with plasma samples. Indeed, with the PP procedure, the occurrence of ME was different on the three SFC columns, and only the 2-picolylamine stationary phase chemistry displayed lower incidence of ME compared to LC-MS/MS. On the contrary, when a SPE clean-up was carried out, the results were similar to the urine samples, with higher performance of SFC vs. LC and limited discrepancies between the three SFC columns. The type of ME observed in LC-MS/MS was generally a signal enhancement and an ion suppression for urine and plasma samples, respectively. In the case of SFC-MS/MS, the type of ME randomly varied according to the analyzed matrix, selected column and sample treatment.


Assuntos
Líquidos Corporais/química , Cromatografia de Fase Reversa/métodos , Cromatografia com Fluido Supercrítico/métodos , Preparações Farmacêuticas/análise , Espectrometria de Massas em Tandem/métodos , Feminino , Humanos , Masculino , Extração em Fase Sólida/métodos
19.
Artigo em Inglês | MEDLINE | ID: mdl-28346887

RESUMO

Recently, steroid hormones quantification in blood showed a promising ability to detect testosterone doping and interesting complementarities with the urinary module of the Athlete Biological Passport (ABP). In this work, an ultra-high pressure liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) method was developed for the quantification of eleven endogenous steroids in serum. The performance of the full scan and targeted SIM acquisition modes was evaluated and compared to the performance of tandem mass spectrometry (MS/MS). Passing-Bablok regressions and Bland-Altman plots were assessed for each analyte of interest, and concentration values measured by HRMS showed high correlation with the ones obtained by MS/MS for all target hormones, with low absolute differences in the majority of cases. A slight decrease in terms of sensitivity was observed with HRMS in both acquisition modes, but performing an analysis of variance multiblock orthogonal partial least squares (AMOPLS) on the dataset obtained with all three methods revealed that only 0.8% of the total variance was related to instrumentation and acquisition methods. Moreover, the evaluation of the testosterone administration effect over time highlighted testosterone itself and dihydrotestosterone as the most promising biomarkers of exogenous testosterone administration. This conclusion suggests that HRMS could provide suitable performance for blood steroid analysis in the anti-doping field.


Assuntos
Anabolizantes/sangue , Cromatografia Líquida de Alta Pressão/métodos , Esteroides/sangue , Espectrometria de Massas em Tandem/métodos , Testosterona/sangue , Di-Hidrotestosterona/sangue , Doping nos Esportes , Humanos , Limite de Detecção , Masculino , Espectrometria de Massas/métodos
20.
Drug Test Anal ; 9(7): 1093-1097, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27758046

RESUMO

The concentration of hepcidin, a key regulator of iron metabolism, is suppressed during periods of increased erythropoietic activity. The present study obtained blood samples from 109 elite athletes and examined the correlations between hepcidin and markers of erythropoiesis and iron metabolism (i.e., haemoglobin, erythropoietin (EPO), ferritin, erythroferrone (ERFE), and iron concentration). Furthermore, an administration study was undertaken to examine the effect of recombinant human EPO (rhEPO) delta (Dynepo™) on hepcidin concentrations in healthy male volunteers. The effects on hepcidin were then compared with those on reticulocyte percentage (Ret%) and ferritin concentration. There was a significant positive correlation between hepcidin and ferritin, iron, and haemoglobin levels in athletes, whereas hepcidin showed an inverse correlation with ERFE. Administration of rhEPO delta reduced hepcidin levels, suggesting that monitoring hepcidin may increase the sensitivity of the Athlete Biological Passport (ABP) for detecting rhEPO abuse. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Eritropoetina/administração & dosagem , Eritropoetina/sangue , Hepcidinas/sangue , Detecção do Abuso de Substâncias/métodos , Adulto , Biomarcadores/sangue , Doping nos Esportes , Eritropoese/efeitos dos fármacos , Ferritinas/sangue , Hemoglobinas/análise , Humanos , Ferro/sangue , Masculino , Contagem de Reticulócitos , Reticulócitos/citologia , Reticulócitos/efeitos dos fármacos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...